16 research outputs found

    Direct laser writing of nanophotonic structures on contact lenses

    Get PDF
    Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na+ ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L–1). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings

    Wearable bifocal contact lens for continual glucose monitoring integrated with smartphone readers

    Get PDF
    Commercial implantable continuous glucose monitoring devices are invasive and discomfort. Here, a minimally-invasive glucose detection system is developed to provide quantitative glucose measurements continually based on bifocal contact lenses. A glucose-sensitive phenylboronic acid derivative is immobilized in a hydrogel matrix and the surface of the hydrogel is imprinted with a Fresnel lens. The glucose-responsive hydrogel is attached to a commercial soft contact lens to be transformed into a bifocal contact lens. The contact lens showed bifocal lengths; far-field focal length originated from the contact lens’ curvature, and near-field focal length resulting from the Fresnel lens. When tear glucose increased, the refractive index and groove depth of the Fresnel lens changed, shifting the near-field focal length and the light focusing efficiency. The recorded optical signals are detected at an identical distance far from the contact lens change. The bifocal contact lens allowed for detecting the tear glucose concentration within the physiological range of healthy individuals and diabetics (0.0–3.3 mm). The contact lens rapidly responded to glucose concentration changes and reached 90% of equilibrium within 40 min. The bifocal contact lens is a wearable diagnostic platform for continual biomarker detection at point-of-care settings

    Ophthalmic sensors and drug delivery

    Get PDF
    Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed

    Syntheses of gold and silver nanocomposite contact lenses via chemical volumetric modulation of hydrogels

    Get PDF
    Integration of nanomaterials into hydrogels has emerged as a prominent research tool utilized in applications such as sensing, cancer therapy, and bone tissue engineering. Wearable contact lenses functionalized with nanoparticles have been exploited in therapeutics and targeted therapy. Here, we report the fabrication of gold and silver nanocomposite commercial contact lenses using a breathing-in/breathing-out (BI-BO) method, whereby a hydrated contact lens is shrunk in an aprotic solvent and then allowed to swell in an aqueous solution containing nanoparticles. The morphology and optical properties of the gold and silver nanoparticles were characterized through transmission electron microscopy and ultraviolet-visible spectroscopy. The transmission spectra of nanocomposite contact lenses indicated that the nanoparticles' loading amount within the lens depended primarily on the number of BI-BO cycles. Nanocomposites were stable for a minimum period of 1 month, and no nanoparticle leaching was observed. Wettability and water content analysis of the nanocomposites revealed that the contact lenses retained their intrinsic material properties after the fabrication process. The dispersion of the nanoparticles within the contact lens media was determined through scanning electron microscopy imaging. The nanocomposite lenses can be deployed in color filtering and antibacterial applications. In fact, the silver nanocomposite contact lens showed blue-light blocking capabilities by filtering a harmful high-energy blue-light range (400-450 nm) while transmitting the visible light beyond 470 nm, which facilitates enhanced night vision and color distinction. The ease of fabricating these nanocomposite contact lenses via the BI-BO method could enable the incorporation of nanoparticles with diverse morphologies into contact lenses for various biomedical applications

    Holographic writing of ink-based phase conjugate nanostructures via laser ablation (vol 7, 10603, 2017)

    Get PDF
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Holographic direct pulsed laser writing of two-dimensional nanostructures

    Get PDF
    The development of accurate and rapid techniques to produce nanophotonic structures is essential in data storage, sensors, and spectroscopy. Existing bottom-up and top-down approaches to fabricate nanophotonic devices are high cost and time consuming, limiting their mass manufacturing and practical applications. Here, we demonstrate a strategy to rapidly create 25–40 nm thick 1/2D Au–Ti nanopatterns using holographic direct laser interference patterning (DLIP). Pulses of an Nd:YAG laser (1064 nm) in holographic Denisyuk reflection mode were used to create ablative interference fringes. The constructive interference antinode regions of the standing wave selectively ablated a Au–Ti layer in localized regions to controllably form nanogratings. Varying the laser exposure parameters allowed for rapid patterning of 2D square and rectangular arrays within seconds. Controlling the distances between the laser source, recording medium, and the object, allowed for achieving a 2D spatial grating periodicity of 640 nm × 640 nm. Diffracted and transmitted light spectra of 2D nanostructure arrays were analyzed using angle-resolved measurements and spectroscopy

    Healthcare applications of pH-sensitive hydrogels based devices: a review

    No full text
    pH-sensitive hydrogels have developed greatly over the past few years. This has been possible due to the synthesis of new hydrogel systems with increased sensitivity - the sensitivity of up to 10-5 pH units have already been established. Recently, pH-sensitive hydrogels have shown to be very useful for biomedical applications, such as targeted cancer treatment and treatment of skin lesions. Prolonged drug release has been made available through the use of such hydrogels. The synthesis of pH-sensitive hydrogels is also quick and cost-effective. This review presents a background on the properties of pH-sensitive hydrogels and discusses some of the hydrogels with different sensitivity ranges and their possible applications. A range of synthesis processes has also been briefly introduced along with the fabrication of different structures such as microcantilevers and contact lenses

    Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts

    No full text
    Discarded cigarette butts (CBs) are among the most common types of litter found around the world. As a possible solution to this problem, this study investigated the possibility of encapsulating CBs with different classes of bitumen and paraffin wax, and incorporating them into asphalt concrete (AC) for pavement construction. The idea behind encapsulation involves restricting the interaction of CBs with fluids and thus preventing chemical translocation. This paper presents and discusses the results of two investigations. The first involved assessing the effects of incorporating different amounts of CBs (10Kg/m3, 15Kg/m3 and 25Kg/m3) encapsulated with different classes of bitumen (C170, C320, C600) into an AC mix manufactured with Class 170 bitumen. The second involved assessing the effects of incorporating 10Kg/m3 of CBs encapsulated with paraffin wax into AC mixes that were manufactured with different classes of bitumen (C170, and C320). All samples, including the control AC samples (no CBs), were tested for mechanical and volumetric properties, including stability, flow, resilient modulus, bulk density, maximum density, air voids, and voids in mineral aggregates. For the first investigation, involving encapsulation of CBs with bitumen, using 10kg/m3 and 15kg/m3 of CBs in an asphalt mix gave results that satisfied the requirements for light, medium and heavy traffic conditions. For the second investigation, involving encapsulation of CBs with paraffin wax, the changes in mechanical and volumetric properties for 10kg/m3 CBs only satisfied the light traffic conditions for road pavements. The reduction in bulk density of AC caused by incorporating encapsulated CBs, increases the porosity, particularly when encapsulating in higher grade bitumen, which, in turn, lowers its thermal conductivity. This helps reduce the Urban Heat Island effect in urban environments

    Direct printing of nanostructured holograms on consumable substrates

    No full text
    Direct texturing of nanostructures on consumable substrates and products is a challenge because of incompatible ingredients and materials’ properties. Here, we developed a direct laser-based method to print nanostructured holograms on dried films of consumable corn syrup solutions. A holographic laser (λ = 1050 nm) interference system was used to construct the nanostructures of the holograms on food for rainbow effects. The relationship between wavelength and periodicity contributed to the changing diffraction angle through the change of the refractive index (1.642). Increasing the sugar concentration (25–175 mg) in the syrup increased the diffraction efficiency of these holograms. The added amount of sugar in the composition increased the refractive index (7%) and decreased the light absorption (12.9%), which influenced the change of diffraction angle by 4.4°. The surface holograms displayed wideband visual diffraction of light extending from violet to red wavelengths. These holograms on edible materials can be imprinted onto commercial food products for adding aesthetic value and controlling perception
    corecore